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A B S T R A C T   

The risk of infection from the COVID-19 virus dictates businesses, such as supermarkets and department stores, to 
impose limits on the maximal number of customers allowed inside a store at any given time. These social 
distancing constraints generate long queues of waiting customers outside such businesses. This work investigates 
the impact of infection risk on arriving customers’ strategic decisions regarding joining such queues. We consider 
a typical store where the floor is divided into two separate areas: (i) a shopping area with at most K shoppers 
allowed, and (ii) a payment area with c ≥ 1 parallel servers and an adjacent limited waiting space of size N ≥ 0. 
When the shopping area is full, a newly arriving customer observes only the outside queue and decides whether 
to join or balk. We investigate customers’ individual joining strategies, as well as social optimization, with a 
utility function that takes into account not only the cost associated with waiting times (as in Naor’s (1969) 
celebrated model), but also the cost related to the risk of infection. We propose an innovative risk measure that is 
a function of both the number of customers already in line, and those that a tagged customer ‘meets’ while 
waiting to enter the store. Consequently, expressions for mean waiting times and infection risk are derived and 
explicit formulas are obtained for limit values of the parameters. Our results can be used by authorities and 
customers alike to determine the maximal allowed queue sizes that ensure safety and reduce the risk of infection 
while minimizing associated costs.   

1. Introduction 

The COVID-19 pandemic has forced numerous businesses, including 
department stores and supermarkets, to limit the number of shoppers 
occupying a store at any given time to minimize the risk of infection. 
Due to these restrictions, long queues are formed outside these busi-
nesses. Clearly, the more people in the queue, the greater is the likeli-
hood of infection as it becomes harder to ensure social distancing (Long 
et al., 2020). Arriving customers may refrain from joining long queues, 
basing their decisions in large part on the risk of infection induced while 
waiting in line. 

In this research, we construct and analyze a multi-server queueing 
model involving two interlaced service phases that limits the number of 
customers in each phase and takes internal blocking and delay into ac-
count. Customers arrive randomly at the store and, when finding a 
queue outside (i.e., the store is occupied by the maximum number of 
allowed customers), decide whether to balk or to wait outside the store 
(in a first-come, first-served (FCFS) line) until permitted to enter. After 
receiving permission to enter, every customer passes through two 

service phases: shopping and payment. A customer first spends a random 
period of time in the shopping area and then proceeds to the payment 
area (second phase) where cashiers are assigned to serve customers. To 
control waiting times in the payment queue and ensure the safety of 
cashiers and customers, store management sets aside a separate waiting 
space with limited capacity as part of the payment area. When the 
payment area is full (all cashiers are busy and all waiting spaces are 
occupied), a customer who has completed shopping “orbits” in the 
shopping area for a random period of time before trying again to enter 
the payment area (see, e.g., Avrachenkov et al., 2014; Perel and 
Yechiali, 2014). When the payment area is not full, a customer enters the 
payment area and becomes a “payer.” Then, when at least one cashier is 
not busy, the payer proceeds directly to a cashier and pays. Otherwise, 
the payer joins the queue of waiting customers in the payment area. 

Though this two-phase service process can appear to be a two-site 
tandem network (see e.g. Perlman and Yechiali, 2020a), that is not 
the case. The two service phases are dependent via the imposed upper 
limits on the total number of customers in each phase. This dependence 
requires a special probabilistic approach when analyzing the system. 
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Recently, several queueing models have been constructed to study 
the impacts of the COVID-19 pandemic (see, e.g., Alban et al., 2020; 
Kaplan, 2020; Long et al., 2020; Perlman and Yechiali 2020b). The later 
authors focused on finding the maximal number of customers allowed 
inside a store, when the risk of infection is proportional to the second 
factorial moment of the number of customers in the system, E[L(L − 1)]. 
While in that model it is assumed that customers do not balk, in the 
current work the capacity of the store is given and customers may 
strategically decide whether to join or not. Consequently, our work 
belongs to the literature on strategic queueing, which has been studied 
extensively since the pioneering work of Naor (1969), who investigated 
customers’ threshold-type joining strategies in an observable M/M/1 
queue. Yechiali (1971, 1972), in an analysis of G/M/1 and G/M/c 
queues, allowed for state-dependent randomized joining probabilities 
and showed that optimal non-randomized strategies exist and that, 
among all non-randomized strategies, a threshold-type joining strategy 
is optimal. Hassin and Haviv (2003) and Hassin (2016) provide 
comprehensive surveys of the field. We extend this stream of literature 
by proposing a novel measure to estimate customers’ risk of infection 
while queueing in crowded areas. The risk is proportional to the number 
of customers a tagged customer joining the outside queue ‘meets’ while 
waiting in line. Based on this risk measure we study strategic behavior of 
both the customers and of the system’s controller (i.e. the authority). 

Upon completing shopping, a customer gains a reward but loses 
opportunity cost due to waiting to be served. While the common 
assumption in the current literature is that cost is a function of cus-
tomer’s waiting time (or customer’s sojourn time), our model considers 
also customer’s cost incurred due to the risk of getting infected. While 
individual customers are interested in maximizing their own utility, the 
goal of the authorities is to maximize social welfare - the expected total 
utility of all the members of the society. I.e., just as customers decide on 
the maximal queue size beyond which they will not join, the authority 
decides on the maximum allowed queue size to ensure the overall wel-
fare and minimize the overall risk of infection. 

Our contribution is three-fold: (i) constructing and analyzing an 
unconventional two-site tandem network with inter-dependence be-
tween the queues; (ii) proposing and evaluating an infection-risk per-
formance measure that depends on the total number of other customers 
a waiting customer meets while in line, including future arrivals; and 
(iii) finding threshold joining strategies of individual customers and of a 
central authority. These thresholds induce maximum allowed queue 
sizes from the perspectives of a ‘selfish’ customer and from the 
perspective of social welfare. 

In contrast to Naor’s (1969) model, in our work an individual cus-
tomer’s strategy depends on the actions of other customers. This follows 
since (i) a customer’s waiting time depends on the observable outside 
queue size, as well as on the number of customers in the shopping and 
payment areas and (ii) a customer’s infection risk depends on the 
number of customers already in the queue and on the number of cus-
tomers who will arrive before s/he enters the store. However, we show 
that the optimal individual threshold value is still higher than the 
counterpart social-oriented threshold. Insights from our model are 
useful to authorities and customers alike when making decisions on the 
maximal allowed queue sizes in order to ensure safety and reduce risk of 
infection, while minimizing associated costs. 

2. Model formulation 

Customers arrive at a store according to a Poisson process with rate λ. 
The shopping process of each customer consists of two stages: shopping 
and then payment. The shopping area has a limited capacity of at most K 
shopping customers (shoppers). The payment area consists of c parallel 
cashiers and an adjacent area for at most N⩾0 waiting customers 
(payers). Payment (service) time of customers is random and is expo-
nentially distributed with mean 1/µ. Shopping time is also random and 
is exponentially distributed with mean 1/ξ. A customer who arrives 

when there are K customers already in the shopping area is not allowed 
to go in and must decide whether to join the queue outside the store and 
wait (in a FCFS line) until permitted to enter or to balk and cancel the 
shopping trip. 

A shopper who has completed shopping proceeds directly to the 
payment area. If the number of customers in the payment area is c + N, 
the customer is blocked and must “orbit” in the shopping area for a 
random period that is distributed exponentially with mean 1/ξ. If the 
number of customers in the payment area is less than c +N, the customer 
enters the payment area (entering phase two and becoming a payer). 
Then, if at least one cashier is idle, the payer proceeds directly to a free 
cashier and pays. Otherwise, the payer waits in the payment waiting 
area until a server (cashier) becomes available. All shopping, service, 
and orbit times are independent of each other and are independent of 
the arrival process. 

As previously stated, this two-phase service process can appear to be 
a two-site tandem network but is not. The two service stages are 
dependent via the imposed upper limits on the total number of cus-
tomers allowed in each phase. Let L1

SHOP (L1
SHOP = 0,1,2,…, K) denote 

the number of customers in the shopping area and L1
OUT denote the 

number of customers queueing up outside the store. Let L1 = L1
SHOP +

L1
OUT and L2 (L2 = 0,1,2, ...,c + N) denote the number of customers in 

the payment area (waiting or being served). Fig. 1 illustrates the sys-
tem’s configuration. 

Denote by r the reward gained by a customer who completes shop-
ping and payment. While in Naor’s (1969) model, only the cost associ-
ated with waiting times were taken into account, we consider an 
additional cost that is proportional to the risk of COVID-19 infection 
associated with waiting in queues. The utility Un of an arriving customer 
who joins a queue of size LOUT

1 = n is given by 

Un ≡ r − γWn − δRn (1)  

where Wn and Rn denote, respectively, the customer’s waiting time and 
infection risk. γ is the customer’s waiting cost per unit of time and δ is a 
scaling factor associated with the risk of being infected by the virus. It is 
assumed that utility functions of individual customers are identical and 
additive from a social point of view. 

In Naor’s (1969) model, an individual customer’s waiting time 
depended solely on the number of customers ahead in line. In our model, 
however, a customer’s waiting time depends on the number of cus-
tomers in the shopping area and on the number of customers in the 
payment area and thus depends on the actions of other customers. 
Moreover, our measure of the risk of infection depends also on the 
number of additional customers who arrive during a customer’s waiting 
time outside the store and not only on the number of customers waiting 
ahead. Thus, an individual customer’s strategy depends on the strategy 
of the other customers. Furthermore, our model deviates from classical, 
fully observable models in that our arriving customer’s strategy is based 
on observing only the length of the outside queue (i.e., a partially 
observable two-stage queue). 

3. Threshold joining strategies 

We analyze threshold-type joining strategies of arriving customers in 
a partially observable two-stage queue. An arriving customer who ob-
serves only the outside queue weighs two alternatives: join the queue or 
balk. Specifically, if the observed number of customers in the queue 
outside the store is lower than a threshold, T, the customer joins the 
outside queue; when the size of the queue is equal to or greater than T, 
the customer balks. Thus, under such a threshold-type T-strategy, the 
outside queue is finite with a maximum of T waiting customers. The 
transition-rate diagram for this system is depicted in Fig. 2. 

The system state space is 
S = {(L1, L2) = (i, j) : i = 0,1, 2,3, ...,K + T; j = 0, 1,2, 3, ..., c + N}. Let 
Pij = P(L1 = i, L2 = j) denote the steady-state probabilities of this sys-
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tem’s states and let Pi = (Pi0, Pi1, ...,Pi,c+N) denote the probability vector 
corresponding to the ith column in Fig. 2. 

We start by defining two probabilities needed to calculate the ex-
pected waiting time of a customer who exercises the T-strategy while all 
other customers use the same strategy. Consider the case in which the 
shopping area is full. The system state is L1 ≥ K and L2 = j. Denote by a(j)
the probability that a shopper leaves the shopping area before a payer 
leaves the payment area given that the shopping area is full and there are 
j customers in the payment area. Then, 

a(j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 j = N + c
Kξ

Kξ + cμ c < j⩽N + c − 1

Kξ
Kξ + jμ 0⩽j⩽c

(2) 

Consider a tagged customer who is in position m+1 in the outside 
queue. Define qm, j as the probability that, when the tagged customer 
becomes the first customer in the outside line, there are no free spaces in 
the payment area, and j is the number of current payers in the payment 
area: j = 0,1, ..., c+N (i.e., L2 = j). When m = 0, the tagged customer is 
already the first in line so the number of free spaces in the payment area 
equals zero only when L2 = c + N. Then, 

Fig. 1. The two-phase service system configuration.  

Fig. 2. Transition-rate diagram for the model.  
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q0,j =

{
1 j = c + N
0 otherwise (3) 

For m⩾1, 

qm,j =

⎧
⎪⎪⎨

⎪⎪⎩

0 m + j < c + N
qm− 1,j+1 m⩾c + N and j = 0

a(j)qm− 1,j+1 + (1 − a(j))qm,j− 1 m + j⩾c + N and 0 < j < c + N
qm,j− 1 j = c + N

(4) 

When m+j < c+N, the payment area will have m+j payers and will 
not be full even if no one leaves the payment area until the tagged 
customer becomes the first in the outside line. This follows since a 
customer from the m customers in the queue can enter the store only if a 
shopping customer moves to the payment area. In other words, there is 
no possibility that the payment area will be full when the tagged 
customer becomes the first customer in the outside queue. When j = 0,
the next event is a shopper leaving the shopping area and joining the 
payment area while a customer in the queue outside enters the store. 
Thus, qm,j = qm− 1,j+1. When j = c+N, the next event is a customer leaving 
the payment area since customers cannot move from the shopping area 
to the payment area when the payment area is full, and qm,j = qm,j− 1. 
When 0 < j < c + N, the next event is either (i) a shopper leaving the 
shopping area and joining the payment area while a customer from 
outside enters the store (with probability a(j)) or (ii) a payer leaving the 
payment area (with probability (1 − a(j)). Note the special case when 
m + j = c + N. In that case, qc+N− j,j is the probability that c+N − j outside 
customers will enter the shopping area sequentially before a payer 
leaves the payment area. Thus, 

qm,j = qc+N− j,j = a(j)⋅a(j + 1)⋅a(j + 2)⋅⋅⋅a(c + N − 1) =
∏m

t=1
a(c + N − t).

3.1. Waiting times 

Assume that there are n customers waiting in the outside line and 
that a tagged customer who finds that LOUT

1 = n, 0⩽n < T, (i.e., LSHOP
1 = K 

and L1 = K + n) joins the outside line at time t0 so that LOUT
1 becomes n 

+ 1. Fig. 3 depicts the time instances along the outside queue. For 
example, when n = 4, four customers are already in line when the 
tagged customer joins the outside line at time t0 where tm represents the 
time at which the mth customer in the outside line enters the store. In 
other words, t1 is the time at which the first customer currently in line 
enters the store, t2 is the time at which the second customer in line enters 
the store, and so on. Finally, t5 is the time at which the tagged customer 
(who was fifth in line upon arrival) enters the store. Let Wm, n = tm − tm− 1 

m = 1, ..., n+1 be the waiting time of the mth customer in the outside line 
until that customer becomes the first one in the line given that LOUT

1 =

n + 1. Let WT
n =

∑n+1
m=1Wm,n (= tn+1 − t0) be the total waiting time of a 

tagged customer who observes LOUT
1 = n and joins the outside queue 

waiting to enter the store. 

Proposition 1.. Assume that the outside queue has only T waiting places. 
Let WT

n be the outside waiting time of a customer who finds LOUT
1 = n⩾0 (i.e., 

the system state is (L1 = K+n, L2 = j) and joins the line so that LOUT
1 be-

comes n + 1. Then, 

WT
n =

∑n+1

m=1

∑c+N

j=0

PK+m, j

PK+m⋅e
(
qm− 1,j(Exp(cμ) + Exp(Kξ)) +

(
1 − qm− 1,j

)
Exp(Kξ)

)

where e is a column vector with all its elements equal to 1. 

Proof:. By the preceding definitions, WT
n =

∑n+1
m=1Wm,n (see the illustration 

in Fig. 3). Define Wm, n, j ≡ Wm, n
⃒
⃒L2 = j. If L2 = c+N when the tagged 

customer becomes the first person in the outside line (which occurs with 
probability qm− 1,j), the tagged customer must wait for a payer to leave the 
payment area and then for a shopper to move from the shopping area to the 
payment area (i.e., waiting time Exp(cμ) + Exp(Kξ)). Otherwise, under the 
complementary probability 1 − qm− 1,j, the customer waits only for a shopper 
to leave the shopping area (i.e., waiting time Exp(Kξ)). 

Thus, Wm, n, j = qm− 1,j(Exp(cμ) + Exp(Kξ))+(1 − qm− 1,j)Exp(Kξ) and 

Wm,n=
∑c+N

j=0
P(L2=j|L1=K+n)⋅Wm,n

⃒
⃒L2=j

=
∑c+N

j=0
P(L2= j|L1=K+n)⋅

(
qm− 1,j(Exp(cμ)+Exp(Kξ))+

(
1− qm− 1,j

)
Exp(Kξ)

)

=
∑c+N

j=0

PK+n,J

PK+n⋅e
⋅
(
qm− 1,j(Exp(cμ)+Exp(Kξ))+

(
1− qm− 1,j

)
Exp(Kξ)

)

Then,  
WT

n =
∑n+1

m=1Wm,n 

=
∑n+1

m=1

∑c+N

j=0

PK+m,j

PK+m⋅e

(
qm− 1,j(Exp(cμ)+Exp(Kξ))

+
(

1− qm− 1,j

)
Exp(Kξ)

)

. ■ 

By Proposition 1, the expected waiting time of a customer who finds 
LOUT

1 = n⩾0 and joins the outside queue is 

E
[
WT

n

]
=

∑n+1

m=1

∑c+N

j=0

PK+m, j

PK+m⋅e

(

qm− 1,j
1
cμ +

1
Kξ

)

(5)  

Corollary 1.. Limit properties of E
[
WT

n
]
:  

(i) When λ→∞, the shopping area is almost always full (equals K) 
and the payment area becomes an M(Kξ)/M(μ)/c/N queue (i.e., c 
parallel servers and additional N waiting places) with steady state 
probabilities of Pj =

ac

c!P0 j = 0, ..., c − 1; Pc+k = ac

c!ρ
kP0 k = 0,...,N; 

Fig. 3. Time instances along the outside line when a customer who finds LOUT
1 = 4 joins the queue.  

Y. Perlman and U. Yechiali                                                                                                                                                                                                                   



Safety Science 138 (2021) 105194

5

P0 =

[
∑c− 1

n=0
an

n! +
ac

c!
∑N+c

n=c ρn− c

]− 1 

where a = Kξ
μ ρ = Kξ

cμ. Thus, the 

probability that the payment area is full is Pc+N =
ac

c!ρ
NP0. lim

λ→∞
E
[
WT

n
]

= (n + 1)
(

Pc+N

(
1
cμ +

1
Kξ

)

+ (1 − Pc+N)
1
Kξ

)

= (n + 1)
(

Pc+N
1
cμ +

1
Kξ

)

(ii) When λ→0, the customer who joins the outside queue is the first 
in line. Thus, 

lim
λ→0

E
[
WT

n

]
=

∑c− 1

j=0
Pj

(
1
jμ +

1
Kξ

)

+
∑c+N

j=c
Pj

(
1
cμ +

1
Kξ

)

=
∑c− 1

j=0
Pj

1
jμ +

∑c+N

j=c
Pj

1
cμ+

1
Kξ    

(iii) As μ→∞, customers do not wait in the payment area. Thus, since 
the payment area is empty, the shopping area is depleted at a rate 
of Kξ, lim

μ→∞
E
[
WT

n
]
= (n+ 1) 1

Kξ.  

(iv) As ξ→∞, customers do not “orbit” in the shopping area. The 
entire system becomes an M(λ)/M(μ)/c/N+T queue. However, 
since the payment area is full, lim

ξ→∞
E
[
WT

n
]
= (n+ 1) 1

cμ.

(v) Clearly, lim
μ→0

E
[
WT

n
]
= lim

ξ→0
E
[
WT

n
]
= ∞. 

3.2. Outside risk of infection 

We define a measure of the risk of infection for a tagged customer 
waiting outside. The risk is proportional to the total number of other 
customers the tagged customer meets while queueing outside before 
entering the store. Let RT

m, n, j be the number of customers that the mth 

customer meets while waiting in the outside line given that there are n 
customers outside and j customers at the payment area. That is, the 
system state is (L1 = K+n, L2 = j). Denote by dSHOP(n, j) the probability 
of moving from state (L1 = K+n, L2 = j) to state (L1 = K + n − 1,L2 =

j + 1). We use the superscript SHOP to indicate that a shopper completes 
shopping and moves to the payment area, implying that the first 
customer (m = 1) in the outside queue enters the shopping area. Denote 
by dJOIN(n, j) the probability of moving from state (L1 = K+n, L2 = j) to 
state (L1 = K + n + 1, L2 = j). In that case, the superscript JOIN in-
dicates that an arriving customer joins the outside queue. Denote by 
dPAY(n, j) the probability of moving from state (L1 = K+n, L2 = j) to state 
(L1 = K+n, L2 = j − 1), which is the probability that a payer completes 
paying and leaves the store. These probabilities are extracted from 
Fig. 2. 

Then, the risk of infection for the tagged customer is proportional to   

If m = 1, the tagged customer is first in the outside line. Thus, with 
probability d SHOP(n,j), the next event is the tagged customer entering 
the store and the number of customers the tagged customer met equals 

n − 1. With probability d JOIN(n,j), a new customer joins the outside 
queue so the tagged customer will meet RT

m, n+1, j customers while wait-
ing outside. Finally, with probability d PAY(n,j), a payer completes pay-
ment and leaves the store, resulting in j − 1 customers in the payment 
area, and the tagged customer will meet RT

m, n, j− 1. Thus, RT
m, n, j = dSHOP(n,

j)(n − 1) + dJOIN(n, j)RT
m, n+1, j + dPAY(n, j)RT

m, n, j− 1.

If m > 1, RT
m, n, j 

= dSHOP(n, j)
(

1 + RT
m− 1, n− 1, j+1

)
+ dJOIN(n, j)RT

m, n+1, j + dPAY(n, j)RT
m, n, j− 1 

since, with probability d SHOP(n,j), the next event is a customer ahead of 
the tagged customer entering the store. The number of customers the 
tagged customer will have met equals 1 (having already met the 
customer ahead who enters the store), and the tagged customer will then 
meet RT

m− 1, n− 1, j+1 additional customers in the store. The effect of the 
other two events (with probabilities d JOIN(n,j), and d PAY(n,j), respec-
tively) is the same as when m = 1. Thus, we state, 

Proposition 2.. Assume that the outside queue has only T waiting places. 
Let RT

n be the number of customers a tagged customer who finds LOUT
1 = n (i. 

e., the system state is (L1 = K+n, L2 = j) and joins the queue meets while 
waiting outside so that LOUT

1 becomes n+1. Then, RT
n 

=
∑c+N

j=0

PK+n, j

PK+n⋅e
RT

n+1, n+1, j 

. 

By Proposition 2, the tagged customer’s expected risk of infection 
when finding LOUT

1 = n⩾0 and joining the outside queue is 

E
[
RT

n

]
=

∑c+N

j=0

PK+n, j

PK+n⋅e
E
[
RT

n+1, n+1, j

]
(7)  

Corollary 2.. Limit properties of E
[
RT

n
]
:  

(i) As λ→∞, the outside queue is almost always equal to the 
threshold T. Thus, lim

λ→∞
E
[
RT

n
]
= n+T − 1. As λ→0, almost no cus-

tomers arrive after the tagged customer and lim
λ→0

E[RT
n ] = n.

(ii) Clearly, lim
μ→0

E
[
RT

n
]
= lim

ξ→0
E
[
RT

n
]
= n + T − 1.

4. Individual optimization 

Define UT
T as the utility of a customer who joins a full queue (size T). 

By Eq. (1), UT
T ≡ r − γWT

T − δRT
T. We next find the maximum queue size set 

by an individual (‘selfish’) customer. That is, we identify an equilibrium 
individual threshold strategy Te that satisfies E[UTe

Te
] < 0 and E[UTe

Te − 1]⩾0. 
For example, consider a store in which the maximum number of 

allowed shoppers is eleven and the payment area has three cashiers and 
a maximum adjacent waiting space of two customers (i.e., K = 11, c = 3,

N = 2). Set λ = 18, μ = 10, and ξ = 3. First consider a customer whose 
only concern is the waiting cost so that δ = 0 and utility,UT

T , is reduced to 
UT

T = r − γWT
T . Thus, from Fig. 4a, the optimal individual strategy Te can 

be derived. If γ = 1 and r = 1, then, as depicted in Fig. 4a, E[WT
T ] = 1 at 

T = 24.5 so the optimal individual threshold is Te = 25. When the 

RT
m, n, j =

⎧
⎨

⎩

dSHOP(n, j)(n − 1) + dJOIN(n, j)RT
m, n+1, j + dPAY (n, j)RT

m, n, j− 1 m = 1

dSHOP(n, j)
(

1 + RT
m− 1, n− 1, j+1

)
+ dJOIN(n, j)RT

m, n+1, j + dPAY(n, j)RT
m, n, j− 1 m > 1

(6)   
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customer’s only concern is risk of infection (i.e., γ = 0), UT
T = r − δRT

T. 
For that case, when δ = 1 and r = 1, Fig. 4b implies that Te = 2 as it is 
considerably lower than the threshold when only waiting time is taken 
into account. 

Next, we perform a sensitivity analysis to investigate the effect of 
changing the parameter values on the optimal individual strategy Te. We 
start with the case of a customer whose only concern is the waiting cost 
so utility is UT

T = r − γWT
T . For example, when r = 1 and γ = 10, Fig. 5 

depicts the optimal strategy Te as a function of model parameters λ, µ, 
and ξ, respectively. 

Now, consider the case of a customer whose utility is UT
n = r − δRT

n . 
That is, a customer who is concerned only about risk of infection. When, 
for example, r = 1 and δ = 0.1, Fig. 6 depicts the optimal strategy Te as a 
function of the model parameters. 

In contrast to Naor’s (1969) model, our optimal individual strategy 
depends on the arrival rate λ. However, when the arrival rate is rela-
tively high (λ > 15 in Fig. 5, λ > 16 in Fig. 6), the threshold remains 
constant for any value of λ. This follows since, under such an arrival rate, 
the store becomes highly congested and the threshold is not sensitive to 
a change in λ. Moreover, a customer whose concern is mainly about risk 
of infection will have a strategy that is more sensitive to changes in λ 
than a customer who considers only the cost of waiting outside. This 
result follows since risk of infection considers also the number of cus-
tomers who arrive after the tagged customer while waiting time depends 
only on the number of customers ahead. As depicted in Figs. 5 and 6, 
increasing ξ (shopping rate) or µ (service rate) increases the optimal 

threshold of an individual exercising the T-strategy. It follows that the 
strategy of a customer whose concern is reducing waiting time will be 
more sensitive to changes in ξ or µ because increasing ξ or µ allows 
customers ahead of the tagged customer to enter the store sooner, thus 
reducing the tagged customer’s waiting time. However, a change in ξ or 
µ only partially helps a customer who considers only infection risk since 
the risk further depends on customers who will arrive after the tagged 
customer. 

5. Overall optimization 

Now we identify the maximum queue size TSo set by the authority 
that maximizes overall social welfare, which is defined as the total ex-
pected net benefit for all customers per unit of time. Denote by U T the 
utility of an arriving customer who joins a full queue of size T (given a 
maximum queue size of T). The probability of observing T customers in 
the outside queue is PK+T⋅e. Thus, the probability that a customer will 

join equals 
(

1 − PK+T⋅e
)

and 

E[UT ] =

∑K− 1
i=0 Pi⋅e⋅r +

∑T− 1
n=0 PK+n⋅e⋅E[UT

n ](
1 − PK+T ⋅e

) (8) 

The first summation term in the numerator of Eq. (8) relates to the 
probability that an arriving customer will enter the store immediately 
upon arrival so there is no waiting cost or infection-risk cost involved. 

Fig. 4. E
[
WT

T
]

and E
[
RT

T
]

as a function of T 
when λ 

= 18, μ = 10, and ξ 

= 3 

.   

Fig. 5. Te as a function of model parameters when r = 1, δ = 0, and γ = 10 (considering only waiting).  
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The second term deals with customers who wait outside and incur both a 
waiting cost and an infection-risk cost and where 
E[UT

n ] ≡ r − γE[WT
n ] − δE[RT

n ].

Denote by SO the expected social benefit per unit of time. Thus, 

SO = λ(1 − PK+T ⋅e)E[UT ] ≡ λeff E[UT ] (9) 

That is, TSo maximizes SO in Eq. (9). 
Using the same numerical example as before – λ = 18, μ = 10, ξ = 3,

K = 11, c = 3, N = 2 – and setting r = 1, Fig. 7 depicts SO as a function 
of T for different values of γ and δ. 

As Fig. 7a shows, when a customer’s only concern is the waiting cost, 
the optimal social threshold is TSo = 8. However, when a customer’s 

Fig. 6. Te as a function of model parameters when r = 1, δ = 0.1, and γ = 0. (considering only risk).  

Fig. 7. SO as a function of T. 7a r = 1, γ = 1, δ = 0 (considering only waiting) , 7b r = 1, γ = 0, δ = 1 (considering only risk).  

Fig. 8. TSo and Te as a function of model parameters when r = 1, γ = 0.4, and γ = 0.04.  
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only concern is infection risk, Fig. 7b, the optimal social threshold is 
TSo = 1. 

The effects of changing the parameter values on the optimal social 
and individual strategies are depicted in Fig. 8. 

Fig. 8 shows that both optimal thresholds decrease in λ and increase 
in μ and ξ. Furthermore, the figure illustrates the gap between the 
optimal thresholds under individual versus social strategies. As in Naor’s 
(1969) model, the optimal social threshold (the maximal queue size set 
by the authority) is always smaller than the optimal individual threshold 
(the maximal queue size set by an individual customer). Hanukov and 
Yechiali (2020) present a case in which this relationship does not 
necessarily hold. 

6. Conclusions 

The risk of infection by the COVID-19 virus has influenced the 
strategic behavior of customers who have to wait in line outside stores to 
obtain service. Consequently, a customer’s decision whether to join such 
a queue or balk, depends both on the expected waiting time in line as 
well as on the risk of infection, which is proportional to the total number 
of other customers who will share the queue, including those already in 
line and those joining prior to the customer entering the premises. We 
derive expressions for mean waiting times and infection risk and obtain 
explicit formulas for limit values of the parameters. We construct a novel 
reward-cost-risk utility structure that determines customers’ strategic 
behavior. Customer decisions in our model depend not only on the 
observed length of the outside queue but also on the unobserved number 
of customers in the payment area. Moreover, it is shown that an indi-
vidual customer’s strategy depends in part on the actions of other cus-
tomers. Numerical examples calculate the threshold values as a function 
of the system’s parameters. 
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